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Role of the equilibrium size of Kadanoff blocks in the loop-expansion technique
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A method developed by the present authors in a previous paper@Phys. Rev. E57, 2594~1998!# leads to the
introduction of the equilibrium size of the Kadanoff blocks as a useful tool to approach the critical properties
of the f4 model. The present paper aims to elucidate the role of the equilibrium size of the Kadanoff blocks
in the loop-expansion technique currently used in the field-theoretic renormalization. While the standard results
are readily obtained, aspects emerge that help clarify the true nature of the smallness parameter in the loop-
expansion technique.@S1063-651X~98!00911-8#

PACS number~s!: 05.70.Jk, 64.60.Ak
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I. INTRODUCTION

In a recent paper@1# we introduced an unconventiona
renormalizative approach to thef4 model, based on there-
sidual free energy. It is shown therein that ifu is the relevant
field, there is a special values* (u) of the scaling paramete
s having the samecritical properties of divergence as th
correlation lengthj.

Instead of calculating the second moment of the pair c
relation function~the usual definition ofj!, s* (u) is obtained
by minimizing the residual free energyf res(s,u), which fol-
lows from Wilson’s renormalization procedure reducing t
original number of degrees of freedom by a factorsd ~in d
dimension!. Since the residual free energyf res(s) can be in-
terpreted as the ‘‘formation energy’’ of Kadanoff blocks
linear sizes, it turns out thats* is the equilibrium size of the
Kadanoff blocks, provided they are considered ascanonic
systems exchangingheat with one another. This argumen
substantiates on a physical ground the relationship, obta
in @1# as a formal result, between the correlation lengthj and
s* .

The equilibrium sizes* of the Kadanoff blocks is obvi-
ously derived from Wilson renormalization group theo
~WRGT! @2#. In the present paper we will show thats* also
enters the field-theoretic approach to renormalization, i
significant way, since 1/s* actually plays the role of the ad
ditional parameter to be introduced formasslessfield renor-
malization. The textbook of Amit@3# will be taken as a ref-
erence point in what follows.

The main advantage of the present method is that
correlation length~that is,s* ! enters the calculations with it
own physical meaning, while in the standard field-theore
renormalization~FTR!, the scaling parameters is introduced
ad hoc, and somehow arbitrarily, in order to remedy t
infrared divergences arising in a massless theory. Since
correlation length is a physical quantity, we have no ar
trariness at all. In particular, we will show that introducin
the correlation length actually produces noninfrared div
gences, which are inherent to the cumulant expansion ra
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than to the vanishing of the mass. However, the loo
expansion technique suggests a way to shift those di
gences to next-order terms, by redefining a ‘‘dressed’’ r
evant field ~renormalized mass! order by order. As a
consequence, the present method makes it possible to
both the critical point and the critical exponentn by express-
ing s* as a function of the dressed field and then by study
the limiting cases*→`. It will be shown that the failure of
the loop expansion is characterized just by the impossib
for s* to diverge at any finite value of the relevant field.

In order to implement the connection betweens* and
FTR, we first show that the resummation of the diagrams
Fig. 1 is equivalent to the one-loop approximation in FT
~see@3#, Chap. 6!. In Sec. II we also show that ifr 0 is the
relevant field andr 050 is theGaussiancritical value, then
the resummation of the diagrams in Fig. 1 yields a new cr
cal point, shifted below by the quantity

r c5
12d

d22
u0 ~d53,4,5, . . .!. ~1!

This coincides with the results of the one-loop approxim
tion. In addition, the values in Eq.~1! turn out to be the
lowest-order approximants~in u0! for the exact critical value
2uc ~Sec. IV!. The new relevant field is thereby conve
niently defined as

u[r 01uc5r 01r c1O~u0
11a!, ~2!

with a a positive exponent. As far as the critical expone
are concerned, we find again the standard results of the
loop approximation, that is, the Ginzburg criterion~Sec. III!.
In addition, we find that the one-loop approximation ma
the one-component model~discrete symmetry! onto the
spherical model~continuous symmetry! in any dimension.
To the authors’ knowledge, this point has never be

FIG. 1. Vacuum bubble diagrams containing, order by order,
maximum number of tadpole subdiagrams.
5461 © 1998 The American Physical Society
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5462 PRE 58C. DEGLI ESPOSTI BOSCHIet al.
stressed before, though some results pointing to the s
conclusion have already been reported in the literature~see,
for example,@3#!. The reason is probably that the standa
method of FTR does not provide the complete one-loop
lution in d52, while our method does. We actually find th
in d52 the one-loop approximation yields the same res
as the Mermin-Wagner theorem@4# for the spherical model
that is, the absence of ordered phases at any finite temp
ture.

In Sec. V we accomplish our program by identifyin
those diagrams whose resummation is equivalent to the
loop approximation in FTR~see Fig. 2!. It is found that in
this case no ordered phase can be found at finite tempera
even in d53. This makes it clear that the loop expansi
does not improve our knowledge of the critical phenomen
with increasing number of loops. The reason is that the t
smallness parameterdn of the loop expansion does conta
both u0 and s* . This is shown in Sec. V, where the gener
expression ofdn at thenth loop is given. It is seen that in
d<3 the divergence ofs* leadsdn to diverge as well, for
n.1. This is the crucial aspect that makes the loop exp
sion unsuitable ind<3, unless other perturbative techniqu
~such as thee expansion! are implemented.

II. DRESSING THE RELEVANT FIELD
AT ONE-LOOP ORDER

For the sake of simplicity, we refer to anabstractone-
componentf4 model, in zero external field, characterized

FIG. 2. Ring diagram dressed with all the possible combinati
of p tadpole, k double-tadpole, andq setting-sun subdiagram
@p,k,qPN, but (p,q,k)Þ(0,0,0)#.
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the two independent parametersr 0 ,u0 , with the Hamiltonian

bH5
1

N (
qW PB

~r 01q2!ufqW u21
u0

N3 (
qW iPB

fqW 1
fqW 2

fqW 3
fqW 4

3d~qW 11qW 21qW 31qW 4! ~3!

in ~dimensionless! momentum space.B is the ~dimension-
less! Brillouin zone andN is the total number of degrees o
freedom. A word of caution is in order about the procedu
adopted to eliminate the factorb51/kBT in Eq. ~3! and
about the presence ofN. The latter feature is necessary b
cause the shrinking of the number of degrees of freedom
an important aspect to be accounted for in the calculation
the residual free energyf res(s,r 0) @1#. In this case, it is con-
venient to perform a linear change in the integral measu
leading to the definition of the partition functionZ,

Z5~pNg!2N/2E d$fqW%e
2bH, ~4!

with g}b51/kBT ~see details in@1#!. In what follows we
takeg as afixedquantity, but letr 0 change arbitrarily, since
we are interested in the critical value of the relevant fie
The critical value of thetemperatureis, of course, anothe
matter of affairs, which should keep track of the depende
of g on the temperature and of the mapping between
specificphysicalmodel and the abstract model Eqs.~3! and
~4!.

It should be stressed that, from the very definition~3!, the
Gaussian critical value corresponds tor 050 andu5uc if the
relevant fieldu is defined by Eq.~2!. On performing a single
renormalization procedure on Eq.~4! and expanding in
Gaussian cumulants, the residual free energy ind dimensions
takes the form@1#

b f res~s,r 0!5b f res
~0!~s,r 0!1 (

n51

` u0
n

n!
Gn~s,r 0!, ~5!

where

s

rams
~6!

is the Gaussian residual free energy. In@1# the expression ofG1 ~corresponding to the first diagram in Fig. 1! has been
explicitly calculated, with the result

G1~s,r 0!53d2@Fd~s,r 0!#2, Fd~s,r 0!5
]Fd~s,r 0!

]r 0
. ~7!

The next terms of the expansion~5! contain contributions from an increasing number of diagrams. However, the diag
indicated in Fig. 1 have the following important property: Atr 050, they yield, order by order, themaximumpowers2n2d of
the scaling parameter. They are thereby dominant whenr 0 is small and the calculated value ofs* is large. This is the reason
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why we keep them under special control, when we study how an arbitrarily smallu0 removes the Gaussian singularity
r 050, possibly shifting it below. The details of the resummation can be found in Ref.@5# and the resulting expression is

~8!
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showing that the residual free energy of thef4 model actu-
ally contains ashiftedGaussian term resulting from the dia
grams in Fig. 1. The second argument of the logarithmic p
of Fd @Eq. ~6!# is r 0112du0Fd(s,r 0), i.e., thedirect corre-
lation function ~otherwise denoted as thetwo-point vertex
functionin FTR!, at first order inu0 . It is important to stress
that the functionFd(s,r 0), from which the diagrams in Fig
1 originate, issingular, if r 0,0, at the points51/Aur 0u. It is
at this stage that our method differs from the standard F
We know thats will be replaced bys* @obtained on mini-
mizing the free energy~8!# and thats* behaves like the
correlation length. Hences* will unavoidablycross the sin-
gularity point 1/Aur 0u if the critical point corresponds to
negative value ofr 0 . Note that the divergence ofFd(s* ,r 0)
@Eq. ~7!# is not related to the vanishing of the ‘‘bare mas
(r 050), but to the cumulant expansion on a Gaussian
tribution, when some eigenvalues of the quadratic form
come negative. Hence we need a formal prescription to
tend the calculations in the regionr 0,0 ~negative bare
mass!, with s>1/Aur 0u. The prescription we use here follow
the same line of reasoning as the one-loop approximatio
FTR ~see@3#!. We define a ‘‘dressed’’ relevant field throug
the implicit equation

r 15r 0112du0Fd~s,r 1! ~r 1>0!, ~9!

which does not contain any singular integral. In addition,
differencer 12r 0 is formally small to first order inu0 . The
procedure we adopt is simply to expressr 0 in Eq. ~8!, in
terms ofr 1 @Eq. ~9!#, dropping all higher-order terms inu0 .
This yields

b f res
~1!~s,r 0!5b f res

~1!~s,r 1!1O~u0
2!. ~10!

At this stage, the strategy to remove the singularities in
integrals is straightforward: Dressing the relevant fie
~renormalizing the mass! actually shifts the singular terms t
the next order, taking advantage of the fact that these te
will be readsorbed into the renormalized quantities in
next-order approximation and so on. This will be explicit
seen at the two-loop level~Sec. V!.

Suppose now that we work in a region of parameter sp
where the contributions to Eq.~8! from the other diagrams is
negligible. The values* that minimizes the free energ
f res

(1)(s,r 1) is found through the equation

]sf res
~1!~s,r 1!1] r 1

f res
~1!~s,r 1!]sr 150. ~11!

From Eqs.~6!, ~7!, and~9! it can be seen that, to first order i
u0 , the second term in Eq.~11! is exactly canceled by the
non-Gaussian part of the first term, whence Eq.~11! becomes
rt

.

s-
-

x-

in

e

e

s
e

e

d

2
ln@11~s* !2r 1#5S 12

d

2
ln g D⇒s* 5

cd

Ar 1

;

cd[S e2/d

g
21D 1/2

, ~12!

showing that the solution is still Gaussian-like@see@1#, Eqs.
~14! and ~15!#, except for replacing the Gaussian fieldr 0
with the dressed fieldr 1(s* ,r 0). On the other hand, the
dressed field~9! is nothing but the renormalized mass
one-loop order in FTR@see@3#, Eq. ~6-35!# and 1/s* plays
the role of the so-called subtraction point in the field theo
~see@3,6#!.

III. THE GINZBURG CRITERION REVISITED

The fact that the dressed fieldr 1 depends ons* itself @Eq.
~9!# is the distinction between the genuine Gaussian prob
and the present one-loop approximation. Indeed, we can
make use of Eq.~12! to eliminater 1 from Eq.~9! in order to
get the relationship betweens* and r 0 . The resulting equa-
tions are

S c4

s* D 2

5F ~r 0124u0!c4
2

c4
2124u0

G H 11
24u0c4

2

c4
2124u0

3 lnF ~s* !21c4
2

11c4
2 G J 21

~d54!, ~13a!

S c3

s* D 2

5~r 0136u0!2
36u0

s* H 11c3Farctan~c3!

2arctanS c3

s* D G J ~d53!, ~13b!

S c2

s* D 2

5r 0112u0lnF ~s* !21c2
2

11c2
2 G ~d52!. ~13c!

It is immediately seen that in four and three dimensionss*
diverges at the pointr 052r c , with r c given by Eq.~1!.
Hence, in view of Eq.~2!, we setr 01r c5u. In four dimen-
sions, Eq. ~13! yields an asymptotic behavior (s* )21

}Au/u ln uu. The critical exponent isalways Gaussian, ac-
cording to the Ginzburg criterion, but with alogarithmic
correction~that disappears ford.4!. In three dimensions
Eq. ~13b! can be transformed into a second-order equation
(s* )21 in the limit (s* )21c3!1. In this case, there is a
crossover from a Gaussian regimeAu@36u0@c3

21

1arctan(c3)# in which (s* )21}Au, to a non-Gaussian re
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gime Au!36u0@c3
211arctan(c3)# in which (s* )21}u

~which meansn51!. Using the appropriate scaling relation
this last result turns out to be equivalent to the one-lo
equation for the susceptibilityx @following Eq. ~6-31! in @3##.
It should be noticed that the exponentn51 is exact in d
53 for thesphericalmodel~recall that, instead, we are dea
ing with a one-component model!.

The two-dimensional case is peculiar in many regar
The standard application of the Ginzburg criterion leads
to the following conclusion: The quantity that should be ke
small, for the Gaussian behavior to be recovereddiverges
logarithmically, unlessu050 @see Eq.~6-31! of @3##. This
means that the critical region is, so to speak, diverge
large even thoughu0 is arbitrarily small. Equation~13c! sub-
stantiates the preceding argument in a more quantitative w
Indeed, it turns out that (s* )21}exp(r0/24u0) in the limit of
large s* , which meansr c5` ~or, equivalently, the critical
point is shifted down to zero temperature!. The absence of a
finite critical point in d52 is reminiscent of the Mermin
Wagner theorem@4# claiming that a two-dimensional syste
with continuoussymmetry cannot exhibit an ordered pha
at finite temperature~if the interactions are short ranged!. As
in the cased53, the one-loop approximation ind52 for the
one-component model~discrete symmetry! yields the same
result as theexacttheory for the spherical model~continuous
symmetry!. A general property thus emerges from t
present revisitation of the Ginzburg criterion: The one-lo
approximation maps the critical properties of the on
component model onto those of the spherical mod
Whether this property does or does not have a deep mea
is an open question, which the authors leave to further inv
tigations.

IV. THE RELATIONSHIP BETWEEN THE EXACT
CRITICAL VALUES 2uc AND 2r c

We have used two different symbols2r c and 2uc to
distinguish~respectively! between the critical value obtaine
by the resummation of certain special diagrams and the e
critical value that would be obtained from the resummat
of all diagrams. We are now in a position to discuss if, or
what extent, the two quantities coincide. The first remark
that in four dimensions the critical value2uc5224u0 , cal-
culated to first order inu0 in the framework of thee expan-
sion, exactly coincides with2r c @Eq. ~13a!#. This might
look like a coincidence, due to the special property that
d54, the universal critical quantities of thef4 model are the
same as the Gaussian model. In other words, the cased54
might suggest that the relationship

uc5r c@11O~u0
a!# ~14!

work only when the resummation of the diagrams in Fig
yields theexactcritical exponent. However, it can be show
that Eq.~14! holds true in three dimensions too. We ma
use of the Ginzburg criterion~revisited above! that the
Gaussian behavior is recovered when the relevant fiel
much larger thanu0

2. In particular, ifstrue* (u) is the true~un-
known! expression ofs* andu[r 01uc is the true relevant
field @Eq. ~2!#, then
p

s.
e
t

ly

y.

-
l.
ing
s-

ct
n

s

n

is

strue* ~u!ur 0505strue* ~uc!5Au1

uc
@11O~u0

2/uc!#, ~15!

provided uc@u0
2. The valueu1@u0 corresponds~modulo

corrections of orderu0
2! to strue* (u1)51, that is, to the value

of the relevant field at which the minimum possible value
the scaling parameter is attained. It is not difficult to veri
by means of Eq.~13b!, that the approximated value ofs* at
r 050 in three dimensions is

s* ~0!5A r 0
1

36u0
@11O~u0!#, ~16!

with s* (r 0
1)51 ~modulo corrections of orderu0

2!. On the
other hand, we have already claimed that the expression~16!
has been obtained from the diagrams in Fig. 1, which yi
the largest contribution atr 050. Hence we can take th
right-hand side members of Eqs.~15! and~16! to be equal to
the lowest significant order inu0 , which yields

uc536u0

u1

r 0
1 @11O~u0

a!#. ~17!

Note that the conditionuc@u0
2 follows self-consistently from

Eq. ~17!. Furthermore, one has, by definition,u15r 0
11uc

and r c536u0 for d53. Now it is an easy matter to obtai
Eq. ~14! from Eq.~17! even in three dimensions. This prove
that, in three and four dimensions, the exact critical po
2uc and the one-loop critical point2r c coincide tofirst
order inu0 .

V. TWO-LOOP APPROXIMATION

In FTR, the two-loop approximation aims to iterate th
mass renormalization to second order inu0 . In order to dress
the relevant field at the same order, we adopt the same
cedure as in the one-loop approximation~Sec. II!, that is, we
identify the diagrams whose resummation yields

f res
~1!~s,r 1!→ f res

~1!~s,r 2!, r 25r 11u0
2g~s,r 2! ~18!

~with g a suitable function!, so that the argument of the loga
rithmic part of Fd @Eq. ~6!# corresponds to the~renormal-
ized! direct correlation function at the second order inu0 .
The diagrams are those reported in Fig. 2 and give
dressed relevant field at two-loop order:

r 25r 1148
d2u0

2

Vd
2 @r 2s2~s,r 2!22s0~s,r 2!#, ~19!

whereVd is thed-dimensional solid angle and

s0~s,r ![s~x50,s,r !, s2~s,r ![
]2s~x,s,r !

]x2 U
x50

,

s~x,s,r ![E
outs

E
outs

ddy ddz

3
xouts

~x1y1z!

@~x1y1z!21r #~y21r !~z21r !
. ~20!
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xouts
is the characteristic function of the hyperspherical sh

outs5$xPRd;1/s,uxu<1%.

As expected, the dressed field of Eq.~19! coincides with the
renormalized mass~see Sec. 6-7 of@3#! @7#. As for the re-
sidual free energy at two-loop order, we get

f res
~2!~s,r 2!5 f res

~1!~s,r 2!1u0
2D f 2~s,r 2!, ~21!

with D f 2 a complicated function not reported here for t
sake of brevity. The calculation leading to Eqs.~19!–~21!
involves a careful account of the anomalous dimensionh
since some of the diagrams in Fig. 2 also affect the coe
cient of x2 in the integral expressions. Details on these
pects can be found in the E-PAPS file@5#, accompanying the
present paper.

Let us now discuss the two-loop approximation in t
three-dimensionalcase only. For this aim, we do not need
minimize f res

(2)(s,r 2) with respect tos ~which is indeed far
from trivial! and then study the divergence of the resulti
s* (r 2). The reason is that Eq.~19! itself, in d53, excludes
any possible divergence ofs* for r 2→0. This is due to the
fact that the integrals0 in Eqs.~19! and~20! behaves, in this
limit, as @5#

r 2→0,
1

s* Ar 2

,`⇒s0;4p2ln 2u ln r 2u2,

~22!

r 2→0,
1

s* Ar 2

→`⇒s0;16p2ln 2u ln r 2u ln s*

~whereas the termr 2s2 is convergent!. In addition, if one
believes that the minimization off res

(2)(s,r 2) yields an inverse
power law relation betweenr 2 and s* ~as in the one-loop
case!, then the two cases in Eq.~22! are seen to coincide
Therefore, Eq.~19! in the limit r 2→0 cannot be satisfied b
any finite rc . In this sense, the three-dimensional case
two-loop order is quite similar to the two-dimensional case
one-loop order@Eq. ~13c!#. In practice, the two-loop approxi
mation ind53 looksworsethan the one-loop approximatio
discussed in Secs. II and III. Of course, the same difficulty
encountered in FTR since the equations are formally
same. The only difference is that in FTR the quantitys* now
plays the role of the ‘‘subtraction point’’~denoted ask in
@3#!. The basic reason why ind<3 the situation gets worse
with increasingorder of approximation, is fairly clear in th
present framework: The loop expansion in not an expans
in powers ofu0 alone, but involves the quantitys* as well.
However, we know thats* diverges like the correlation
length at the critical point@1# and the ways* enters the
expansion depends crucially on the dimensiond. The results
obtained so far show that ind<3, the true ‘‘smallness pa
rameter’’ of the expansion becomes divergingly large at
critical point, just at two-loop order (d53) or even at one-
loop order (d52). Indeed, these results can be regarded
special cases of the following general argument. The sec
case in Eq.~22! turns out to be the unique case whens is
considered an independentfinite parameter. Let us take fo
granted that, at each order, the diagrams containing sup
l:

-
-

t
t

s
e

n

e

s
nd

rfi-

cial divergences are all canceled by the dressing proce
itself ~or by the so-calledcountertermsin FTR language
@3,6#!. Then the relevant field is dressed only by the ‘‘mo
connected’’ diagrams. Since these contribute to the tw
point direct correlation function withn loops at ordern, we
are left with a totally coupledd3n-dimensional integral.
The n integrated momenta, distributed over 2n21 internal
lines ~denominators!, can be cast in adn-dimensional hyper-
vector X, whose integration domain is roughly (1/s,1) in
modulus. The denominators yield a contribution that roug
behaves likeiXi22(2n21) and the~dominant! contribution to
the dressed relevant fieldr n at the thenth loop should be

u0
nE

1/s*

1

dr rnd21r24n125u0
nE

1/s*

1

dr r2ne11, ~23!

with r5iXi and e542d. From Eq.~23! we see that the
quantity

dn~s* !}u0S E
1/s*

1

dr r2ne11D 1/n

~24!

should describe the true smallness parameter of the loop
pansion~see also@3#, Sec. 8-4!. Indeed, both casese52, n
51 ande51, n52 studied above agree with Eq.~24! in that
the smallness parameter diverges at the critical point. All t
shows that the loop-expansion technique cannot approach
problem close to the critical region, unless one finds a wa
keep the divergence of the smallness parameter under
trol. As stressed in@3# ~Sec. 8-4!, this necessity preludes t
the introduction of thee expansion.

VI. CONCLUSIONS

In @1# a modified version of WRGT was introduced,
which the correlation length is calculated by minimizing t
residual ~renormalized! free energy with respect to the sca
ing parameters. As stressed in@1#, the method makes use o
the basic ingredients of WRGT, but avoids, in principle, t
necessity ofiterating the procedure to approach thefixed
point. This is because the value of the scaling parameters*
is determined, with its own critical properties, by the min
mization of the residual free energy.

In view of more elaborate applications, a first step is
identify which procedure is to be intended as theloop expan-
sion for the present method. The resummation of the d
grams in Fig. 1 is shown to realize the goal at the one-lo
level. The present approach yields some progress beyond
standard results. One important point is to recognize that
diagrams in Fig. 1 are dominant for larges, at each order in
u0 , if r 050. It is this result that makes it possible to clai
that the one-loop shiftingr c of the critical point@Eq. ~1!# is
actually the first-order approximation~in u0! of the exact
critical point uc ~Sec. IV!. A revisitation of the Ginzburg
criterion~Sec. III! yields the standard results reported in te
books~see, in particular,@3#!. However, an intriguing aspec
does emerge, not explicitly stressed by other authors:
one-loop approximation maps the universal critical prop
ties of a one-componentmodel onto those of aspherical
model. This point probably deserves some attention an
left to future investigations.
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The strategy used in Sec. II to identify which diagra
resummation is equivalent to the one-loop approximation
be extended to next orders: One has to dress the rele
field the same way as the mass is renormalized in FTR. T
means that the direct correlation function~two-point vertex
function!, calculated at higher and higher orders inu0 , must
be adsorbed into thelogarithmic part of the residual free
energy. Following this line, it is found that the diagrams
be resummed further at the two-loop level are those in Fig
~Sec. V!. In three dimensions, it can be seen that the seco
order term inu0 diverges essentially as a power of lns* near
the critical point. This utters the failure of the loop expansi
as a useful method to investigate the critical region. Inde
the expression of the true smallness parameterdn of the loop
expansion at thenth order@Eq. ~24!# shows thatdn diverges
with divergings* at any ordern.1 in d<3. However,s*
mustdiverge at the critical point since we have shown tha
scales like the correlation length. In practice the smalln
parameter is never small ind<3, close enough to the critica
i,

d

fo
om
e

n
nt
is

2
d-

d,

t
s

point. This clearly explains why ind<3 the loop expansion
is not sufficient, by itself, to improve the approximation o
der by order if one is interested in the critical region, unle
a new perturbative parameter is introduced keeping the
vergence ofs* under control. This clarifies the crucial rol
played by thee expansion.

At this stage one may wonder whether thee expansion is
a unique technique to approach the study of the critical pr
erties ind,4. The present approach shows that the origin
the problems stems from theGaussiancumulant expansion
The point is that a Gaussian cumulant expansion yields s
problems just close to the critical region, where the ‘‘pertu
bation’’ u0 becomes thedominantterm. The quickest way to
remove any singularity in a perturbative expansion close
the critical point should be treating the Gaussian part itsel
the Hamiltonian as a perturbation. Though this approa
might look discouraging at first, our next attempt will poi
to this direction since thephysicalmeaning ofs* seems to
open some perspectives for a possiblenon-Gaussian~quar-
tic! expansion in cumulants.
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