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Role of the equilibrium size of Kadanoff blocks in the loop-expansion technique
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A method developed by the present authors in a previous pBbgs. Rev. 557, 2594(1998] leads to the
introduction of the equilibrium size of the Kadanoff blocks as a useful tool to approach the critical properties
of the ¢* model. The present paper aims to elucidate the role of the equilibrium size of the Kadanoff blocks
in the loop-expansion technique currently used in the field-theoretic renormalization. While the standard results
are readily obtained, aspects emerge that help clarify the true nature of the smallness parameter in the loop-
expansion techniquéS1063-651X98)00911-§

PACS numbe(s): 05.70.Jk, 64.60.Ak

I. INTRODUCTION than to the vanishing of the mass. However, the loop-
expansion technique suggests a way to shift those diver-
In a recent papefl] we introduced an unconventional gences to next-order terms, by redefining a “dressed” rel-
renormalizative approach to th#* model, based on thee-  evant field (renormalized magsorder by order. As a
sidualfree energy. It is shown therein thatdfis the relevant consequence, the present method makes it possible to find
field, there is a special valte¥ () of the scaling parameter both the critical point and the critical exponenby express-

s having the sameritical properties of divergence as the ing s* as a function of the dressed field and then by studying
correlation lengtrg. the limiting cases* —<. It will be shown that the failure of

the loop expansion is characterized just by the impossibility
for s* to diverge at any finite value of the relevant field.

In order to implement the connection betwesh and
FTR, we first show that the resummation of the diagrams in
Fig. 1 is equivalent to the one-loop approximation in FTR

. . X : : (see[3], Chap. 6. In Sec. Il we also show that ify is the
dimension. Since the residual free energi{s) can be in- relevant field and ,=0 is the Gaussiancritical value, then

terpreted as the “formation energy” of Kadanoff blocks of ¢ resymmation of the diagrams in Fig. 1 yields a new criti-
linear sizes, it turns out thas* is the equilibrium size of the point, shifted below by the quantity

Kadanoff blocks, provided they are consideredcasonic

Instead of calculating the second moment of the pair cor
relation function(the usual definition of), s* () is obtained
by minimizing the residual free enerdy.ds, ), which fol-
lows from Wilson’s renormalization procedure reducing the
original number of degrees of freedom by a facsbr(in d

systems exchangingeat with one another. This argument 12d

substantiates on a physical ground the relationship, obtained rc:ﬁuo (d=345,..). @)

in [1] as a formal result, between the correlation lengémd

s* This coincides with the results of the one-loop approxima-

The equilibrium sizes* of the Kadanoff blocks is obvi- tion. In addition, the values in Ed1) turn out to be the
ously derived from Wilson renormalization group theory lowest-order approximantgn u,) for the exact critical value
(WRGT) [2]. In the present paper we will show thsit also ~ — 6. (Sec. V). The new relevant field is thereby conve-
enters the field-theoretic approach to renormalization, in #@iently defined as
significant way, since & actually plays the role of the ad- l+a
ditional parameter to be introduced forasslessield renor- 6=ro+ 6. =ro+r.+0(ug "), 2

malization. The textbook of Amit3] will be taken as a ref- ) » .
erence point in what follows. with a a positive exponent. As far as the critical exponents

The main advantage of the present method is that th8"® concerned, we find again the standard results of the one-
correlation lengththat is,s*) enters the calculations with its 0P approximation, that is, the Ginzburg criterit®ec. 11).

own physical meaning, while in the standard field-theoretidn @ddition, we find that the one-loop approximation maps

renormalization FTR), the scaling parameteris introduced "€ ©One-component modeldiscrete symmety onto the
ad hog and somehow arbitrarily, in order to remedy the SPherical modelcontinuous symmetjyin any dimension.

infrared divergences arising in a massless theory. Since thE® the authors’ knowledge, this point has never been
correlation length is a physical quantity, we have no arbi-

trariness at all. In particular, we will show that introducing
the correlation length actually produces noninfrared diver- 8
gences, which are inherent to the cumulant expansion rather
FIG. 1. Vacuum bubble diagrams containing, order by order, the
*Electronic address: FERRARI@GPXBOF.DF.UNIBO.IT maximum number of tadpole subdiagrams.
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the two independent parametegsug, with the Hamiltonian

1 u
BH=1 S (ro+ )| g+ 3 aZB ZRZRZR

qeB

X 8(Qy+ o+ Qg+ a) ®3)

in (dimensionlessmomentum spaceB is the (dimension-

les9 Brillouin zone andN is the total number of degrees of

freedom. A word of caution is in order about the procedure
FIG. 2. Ring diagram dressed with all the possible combinationsadopted to eliminate the factgg=1/kgT in Eq. (3) and

of p tadpole, k double-tadpole, and) setting-sun subdiagrams ahout the presence ®f. The latter feature is necessary be-

[p.k.aeN, but (p,q,k)#(0,0,0)}. cause the shrinking of the number of degrees of freedom is

an important aspect to be accounted for in the calculation of

stressec_j before, though some results pointing to the samfe residual free energiy.{s.ro) [1]. In this case, it is con-
conclusion have already been reported in the literatsee, \enjent to perform a linear change in the integral measure,
for example,[3]). The reason is probably that the standard|eading to the definition of the partition functidh

method of FTR does not provide the complete one-loop so-

lution in d=2, while our method does. We actually find that
in d=2 the one-loop approximation yields the same results _ 7N/2f Aa-pH
as the Mermin-Wagner theore] for the spherical model, 2=(mNy) diggie @
that is, the absence of ordered phases at any finite tempera-
ture.

In Sec. V we accomplish our program by identifying

with yoc 8=1/kgT (see details if1]). In what follows we
h di h L ival h take vy as afixedquantity, but letr; change arbitrarily, since
those diagrams whose resummation is equivalent to the tWoge 4re interested in the critical value of the relevant field.

Iopp approximation in FTRsee Fig. 2 It is fqgnd that in The critical value of theemperatureis, of course, another
this case no orde.red phase.can be found at finite temperatuig iter of affairs, which should keep track of the dependence
even ind=3. This makes it clear that the loop expansion y on the temperature and of the mapping between the

does not improve our knowledge of the critical phenomenor&pecificphysicalmodel and the abstract model E8) and
with increasing number of loops. The reason is that the trug,

smallness parametef, of the loop expansion does contain i shouid be stressed that, from the very definitip the
bothu, and s*. This is shown in Sec. V, where the general Gaussian critical value corresponds =0 andé= 6, if the

expression 05, at then'ih loop is given. Itis seen that in o \eyant fieldg is defined by Eq(2). On performing a single
d<3 the divergence ot* leadsd, to diverge as well, for  onormalization procedure on Ed4) and expanding in

n>1. This is the crucial aspect that makes the loop expang,yssian cumulants, the residual free energy dimensions
sion unsuitable ird<3, unless other perturbative techniques,yes the fornf 1]

(such as the: expansioh are implemented.

o n
Il. DRESSING THE RELEVANT FIELD _ (0 ﬁ
AT ONE-LOOP ORDER PlredSiTo) 'Bffes(s’rOHr;l ot Gn(S:ro)
For the sake of simplicity, we refer to abstractone-
component* model, in zero external field, characterized by where
|
d ! 1 1 Ins
(0) _ d-1 2 nd _ PO
,G’fm(s,ro)—2 l/sdxac ln(ro+x)+2 (1 5d>ln =T (6)

®4(s,r0)

is the Gaussian residual free energy.[Ifj the expression ofj; (corresponding to the first diagram in Fig) hhas been
explicitly calculated, with the result

D y(s,ro)

g1(81r0)23d2[|:d(51r0)]21 Fd(saro): 3"0

)

The next terms of the expansi@h) contain contributions from an increasing number of diagrams. However, the diagrams
indicated in Fig. 1 have the following important property: iAt=0, they yield, order by order, thmaximumpowers?"~ ¢ of
the scaling parameter. They are thereby dominant whes small and the calculated value &f is large. This is the reason
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why we keep them under special control, when we study how an arbitrarily sa#tmoves the Gaussian singularity at
ro=0, possibly shifting it below. The details of the resummation can be found in[Re&nd the resulting expression is

B fees(5,70) = BFO(s,r0 + 12duo Fu(s, 7)) — 3d*uo[Fa(s, o0)]* +(Contributions from Other Diagrams), )

res

sl

showing that the residual free energy of ## model actu- d c
ally contains ashiftedGaussian term resulting from the dia- =In[1+(s*)%r,]= —d;

grams in Fig. 1. The second argument of the logarithmic part 2 ry

of &4 [Eq. (6)] is ro+12dugF4(s,rg), i.e., thedirect corre- o 7

lation function (otherwise denoted as th®o-point vertex c E(e__l) (12
functionin FTR), at first order inug. It is important to stress d Y '

that the function®4(s,rg), from which the diagrams in Fig. ) o o

1 originate, issingular, if r,<0, at the poins=1//[ro|. It is showing that the solution is still Qaussmn-h[&ee[l], Eqs.
at this stage that our method differs from the standard FTR(14 and (15)], except for replacing the Gaussian field

We know thats will be replaced bys* [obtained on mini- with the dressed field ;(s*,ro). On the other hand, the
mizing the free energy8)] and thats* behaves like the dressed field(9) is nothing but the renormalized mass at

correlation length. Hence* will unavoidablycross the sin- One-loop order in FTRsee[3], Eq. (6-35] and 16" plays

gularity point M/m if the critical point corresponds to a the r%IeGOf the so-called subtraction point in the field theory
negative value of ;. Note that the divergence &f;(s*,rg) (see(3,6)).

[Eq. (7)] is not related to the vanishing of the “bare mass”
(ro=0), but to the cumulant expansion on a Gaussian dis- !ll. THE GINZBURG CRITERION REVISITED
tribution, when some eigenvalues of the quadratic form be- 16 fact that the dressed fielg depends oss* itself[Eq.

come negative. Hence we need a formal prescription 10 €Xg)] js the distinction between the genuine Gaussian problem
tend the calculations in the region,<0 (negative bare 5.4 the present one-loop approximation. Indeed, we can now
mas$, with s=1/\/|r,|. The prescription we use here follows make use of Eq(12) to eliminater; from Eq.(9) in order to

the same line of reasoning as the one-loop approximation iget the relationship betweest andr,. The resulting equa-
FTR (see[3]). We define a “dressed” relevant field through tions are

the implicit equation

1 d| * =
—Eny:s =

2 2 2
c ro+24ug)c 24u,c
ri=ro+12dugF4(s,ry) (r;=0), (9) (_;1) _ ( o2 0)Cs . oCy
S c;+t24uq cy+24u,
which does not contain any singular integral. In addition, the o
differencer,—r is formally small to first order iruy. The X1In (s")"+cq

-1
] (d=4), (1339

procedure we adopt is simply to expreassin Eq. (8), in 1+cf1

terms ofr, [Eq. (9)], dropping all higher-order terms imy.

This yields cs)2 36U,
e =(r0+36u0)—s—* 1+c5| arctaricy)
Bfied(s.ro) = Bfigl(s.r1) +O(up). (10
c
At this stage, the strategy to remove the singularities in the —arctarES—f “ (d=3), (13b)
integrals is straightforward: Dressing the relevant field
(renormalizing the magactually shifts the singular terms to 2 (s*)2+c2
th.e next order, taking advantage of thg fact that .thesg terms (_f =ro+12ugln| —————| (d=2). (130
will be readsorbed into the renormalized quantities in the 1+c;

next-order approximation and so on. This will be explicitly =~ . ) . .
seen at the two-loop levéBec. \). It is immediately seen that in four and three dimensishs
Suppose now that we work in a region of parameter spacgiverges at the pointo=—rc, with rc given by Eq.(1).
where the contributions to E¢8) from the other diagrams is Hence, in view of Eq(2), we setro+r.= 6. In four dlm??-
negligible. The values* that minimizes the free energy Sions, Eg.(13) yields an asymptotic behaviorsY)

cording to the Ginzburg criterion, but with lagarithmic
3sf(r£(5,r1)+r7r1f§é§(3.r1)ﬁsr1:0- (1D correction (that disappears fod>4). In three dimensions,

Eq. (13b) can be transformed into a second-order equation in
From Egs(6), (7), and(9) it can be seen that, to first order in (s*) ™" in the limit (s*) 'cz<1. In this case, there is a
U, the second term in Eq11) is exactly canceled by the crossover from a Gaussian regime/6>36ug[c; "
non-Gaussian part of the first term, whence @9) becomes  +arctan¢s)] in which (s*) '«./6, to a non-Gaussian re-
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gime \6<36ug[c;+arctant;)] in which (s*) 1«6 . . [o" )

(which means/=1). Using the appropriate scaling relations, Situd 0)lr4=0= Struel ) = - [1+0(ug/ 6c)], (19
this last result turns out to be equivalent to the one-loop ¢

equation for the susceptibility [following Eq.(6-31) in [3]].  provided 6.>u3. The valued*>u, correspondgmodulo

It should be noticed that the exponent=1 is exactin d  corrections of ordeu?) to s, (6")=1, that is, to the value
=3 for thesphericalmodel(recall that, instead, we are deal- of the relevant field at which the minimum possible value of
ing with a one-component model the scaling parameter is attained. It is not difficult to verify,

The two-dimensional case is peculiar in many regardsby means of Eq(13b), that the approximated value sf at
The standard application of the Ginzburg criterion leads ong ;=0 in three dimensions is

to the following conclusion: The quantity that should be kept

small, for the Gaussian behavior to be recovedagerges ro

logarithmically, unlessi,=0 [see Eq.(6-31) of [3]]. This s*(0)= 360 [1TO(uo)], (16)

means that the critical region is, so to speak, divergently 0

large even thoughy is arbitrarily small. Equatioif130 sub-

stantiates the preceding argument in a more quantitative w

Indeed, it turns out thatst') ~Lcexpy/24u,) in the limit of

large s*, which meang .= (or, equivalently, the critical

point is shifted down to zero temperatur&éhe absence of a

finite critical point in d=2 is reminiscent of the Mermin-

Wagner theoren] claiming that a two-dimensional system

with continuoussymmetry cannot exhibit an ordered phase o+

at finite temperaturéf the interactions are short rangeds 9c=36Uor—+[1+O(U3)]- 17

in the casal= 3, the one-loop approximation oh=2 for the 0

one-component modédtiscrete symmetpyyields the same

result as thexacttheory for the spherical modétontinuous

symmetry. A general property thus emerges from the

present revisitation of the Ginzburg criterion: The one-loop

222:85:22:'0210?;%0;2? tﬁgggalof r?r?:rt;e;he?ifc;remgggthat' in three and four dimensions, the exact critical point
. .— 6. and the one-loop critical point-r. coincide tofirst

Whether this property does or does not have a deep meaning -

is an open question, which the authors leave to further inves- 0

tigations.

with s*(r¢)=1 (modulo corrections of orden3). On the
@jther hand, we have already claimed that the expregai®n
has been obtained from the diagrams in Fig. 1, which yield
the largest contribution aty=0. Hence we can take the
right-hand side members of Eq4.5) and(16) to be equal to
the lowest significant order ing, which yields

Note that the conditiod > u% follows self-consistently from
Eq. (17). Furthermore, one has, by definitiosiy =rg + 6,
andr.=36u, for d=3. Now it is an easy matter to obtain
Eqg. (14) from Eq.(17) even in three dimensions. This proves

V. TWO-LOOP APPROXIMATION

V. THE RELATIONSHIP BETWEEN THE EXACT In FTR, the tWO-lOOp apprOXimation aims to iterate the
CRITICAL VALUES —6, AND —r, mass renormalization to second ordeujn In order to dress

the relevant field at the same order, we adopt the same pro-

We have used two different symbolsr. and — 6. to  cedure as in the one-loop approximati@ec. ), that is, we
distinguish(respectively between the critical value obtained identify the diagrams whose resummation yields
by the resummation of certain special diagrams and the exact
critical value that would be obtained from the resummation fO(sr)—f2(s,ry), ro=ri+ulg(sry) (18
of all diagrams. We are now in a position to discuss if, or to
what extent, the two quantities coincide. The first remark iswith g a suitable functioj so that the argument of the loga-
that in four dimensions the critical value .= — 24u,, cal-  rithmic part of @4 [Eq. (6)] corresponds to thérenormal-
culated to first order i, in the framework of thes expan-  ized) direct correlation function at the second orderuig.
sion, exactly coincides with-r. [Eq. (138]. This might The diagrams are those reported in Fig. 2 and give the
look like a coincidence, due to the special property that indressed relevant field at two-loop order:
d=4, the universal critical quantities of th&* model are the 5 2
same as the Gaussian model. In other words, the dask d“ug

might suggest that the relationship fa=ry+48 03 [rooa(s,r2)=200(s,r2)). (19

f.=r [1+0(ud)] (14) where() 4 is thed-dimensional solid angle and
FPa(X,s,r)

work only when the resummation of the diagrams in Fig. 1~ 0o(S,1)=0(x=08.1), oa(s1)=—"7— |

yields theexactcritical exponent. However, it can be shown x=0

that Eq.(14) holds true in three dimensions too. We make

use of the Ginzburg criterior{revisited abov that the a(x,s,r)zf f ddy diz

Gaussian behavior is recovered when the relevant field is outy J outg

much larger tham3. In particular, ifs}, 6) is the true(un- X+y+2)
known) expression o6* and #=r,+ 6, is the true relevant % Xou(X+y
field [Eq. (2)], then [(X+y+2)°+r](y?+r)(Z2+1)"

(20
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Xout, IS the characteristic function of the hyperspherical shellial divergences are all canceled by the dressing procedure

out,={xe RY1/s<|x|<1}.

As expected, the dressed field of Efj9) coincides with the
renormalized masssee Sec. 6-7 of3]) [7]. As for the re-
sidual free energy at two-loop order, we get

ff'gg(ser):fﬁé—;(s’rZ)—i_uSAfZ(Ser)i (21)

itself (or by the so-calledcountertermsin FTR language
[3,6]). Then the relevant field is dressed only by the “most
connected” diagrams. Since these contribute to the two-
point direct correlation function with loops at orden, we

are left with a totally coupledix n-dimensional integral.
The n integrated momenta, distributed oven-21 internal
lines (denominatorg can be cast in dn-dimensional hyper-
vector X, whose integration domain is roughly §11) in
modulus. The denominators yield a contribution that roughly

with Af, a complicated function not reported here for the hehaves likd X||~2(2*~1) and the(dominan} contribution to

sake of brevity. The calculation leading to Eq$9)—(21)
involves a careful account of the anomalous dimension

since some of the diagrams in Fig. 2 also affect the coeffi-
cient of x in the integral expressions. Details on these as-

pects can be found in the E-PAPS fil§, accompanying the
present paper.

the dressed relevant fielg, at the thenth loop should be

—netl

dp p , (23

1 1
n nd-1_-4n+2_ n
u J’ dpp p =u
0 0
1/s* 1/s*

with p=|X|| and e=4—d. From Eq.(23) we see that the

Let us now discuss the two-loop approximation in theqyantity

three-dimensionatase only. For this aim, we do not need to

minimize f{2)(s,r,) with respect tos (which is indeed far

from trivial) and then study the divergence of the resulting

s*(r,). The reason is that Eq19) itself, in d=3, excludes
any possible divergence sf for r,—0. This is due to the
fact that the integrat in Egs.(19) and(20) behaves, in this
limit, as[5]

r,—0, ——<ow=ge~4mwn2/Inr,|?,
2 S*\/E 0 | 2|
(22)
r,—0 ! — =0y~ 1672In 2/In r,|In s*
©ostr

(whereas the term,o, is convergent In addition, if one

believes that the minimization df2)(s,r,) yields an inverse
power law relation between, and s* (as in the one-loop
case, then the two cases in E§22) are seen to coincide.

1/n
(24)

1
5n(S*)°<uO<J dp p7"tt
1/s*

should describe the true smallness parameter of the loop ex-
pansion(see alsd3], Sec. 8-4. Indeed, both cases=2, n

=1 ande=1, n=2 studied above agree with E@4) in that

the smallness parameter diverges at the critical point. All this
shows that the loop-expansion technique cannot approach the
problem close to the critical region, unless one finds a way to
keep the divergence of the smallness parameter under con-
trol. As stressed i3] (Sec. 8-4, this necessity preludes to
the introduction of thes expansion.

VI. CONCLUSIONS

In [1] a modified version of WRGT was introduced, in
which the correlation length is calculated by minimizing the
residual (renormalizedl free energy with respect to the scal-

Therefore, Eq(19) in the limitr,—0 cannot be satisfied by ing parametes. As stressed ifil], the method makes use of
any finite r.. In this sense, the three-dimensional case athe basic ingredients of WRGT, but avoids, in principle, the
two-loop order is quite similar to the two-dimensional case ahecessity ofiterating the procedure to approach ttied

one-loop ordefEq. (1309)]. In practice, the two-loop approxi-

point This is because the value of the scaling parameter

mation ind= 3 looksworsethan the one-loop approximation is determined, with its own critical properties, by the mini-
discussed in Secs. Il and Ill. Of course, the same difficulty ismization of the residual free energy.
encountered in FTR since the equations are formally the In view of more elaborate applications, a first step is to

same. The only difference is that in FTR the quantitynow
plays the role of the “subtraction point(denoted asc in

identify which procedure is to be intended as lthep expan-
sion for the present method. The resummation of the dia-

[3]). The basic reason why id<3 the situation gets worse, grams in Fig. 1 is shown to realize the goal at the one-loop
with increasingorder of approximation, is fairly clear in the level. The present approach yields some progress beyond the
present framework: The loop expansion in not an expansiostandard results. One important point is to recognize that the

in powers ofu, alone, but involves the quantis/ as well.

However, we know that* divergeslike the correlation
length at the critical poinfl] and the ways* enters the
expansion depends crucially on the dimensioThe results
obtained so far show that id<3, the true “smallness pa-

diagrams in Fig. 1 are dominant for largeat each order in
Ug, if rg=0. It is this result that makes it possible to claim
that the one-loop shifting,. of the critical point[Eq. (1)] is
actually the first-order approximatiotin ug) of the exact
critical point 6. (Sec. IV). A revisitation of the Ginzburg

rameter” of the expansion becomes divergingly large at thecriterion (Sec. 1ll) yields the standard results reported in text-

critical point, just at two-loop orderd=3) or even at one-

books(see, in particular,3]). However, an intriguing aspect

loop order @=2). Indeed, these results can be regarded adoes emerge, not explicitly stressed by other authors: The
special cases of the following general argument. The seconane-loop approximation maps the universal critical proper-

case in Eq(22) turns out to be the unique case wheris

ties of a one-componentnodel onto those of a&pherical

considered an independeiimite parameter. Let us take for model. This point probably deserves some attention and is
granted that, at each order, the diagrams containing superfeft to future investigations.
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The strategy used in Sec. Il to identify which diagram point. This clearly explains why id<3 the loop expansion
resummation is equivalent to the one-loop approximation cais not sufficient, by itself, to improve the approximation or-
be extended to next orders: One has to dress the relevafier by order if one is interested in the critical region, unless
field the same way as the mass is renormalized in FTR. Thi@ néw perturbative parameter is introduced keeping the di-
means that the direct correlation functi@o-point vertex ~Vergence ofs* under control. This clarifies the crucial role

function), calculated at higher and higher orderau must plazf(tjhibsysttgeeee())(rrl)gnmsfnWonder whether #1expansion is
be adsorbed into thégarithmic part of the residual free g y b

. - L ; a unigue technique to approach the study of the critical prop-
energy. Following this line, it is found that the diagrams 10 gptieg'ing< 4. The present approach shows that the origin of

be resummed further at the two-loop level are those in Fig. 2o problems stems from th@aussiancumulant expansion.
(Sec. V. In three dimensions, it can be seen that the secondfhe point is that a Gaussian cumulant expansion yields some
order term inu, diverges essentially as a power ofdfinear  problems just close to the critical region, where the “pertur-
the critical point. This utters the failure of the loop expansionbation” u, becomes thelominantterm. The quickest way to
as a useful method to investigate the critical region. Indeediemove any singularity in a perturbative expansion close to
the expression of the true smallness paraméteaf the loop  the critical point should be treating the Gaussian part itself of
expansion at thath order[Eq. (24)] shows thats, diverges the Hamiltonian as a perturbation. Though this approach
with divergings* at any ordem>1 in d<3. However,s* might look discouraging at first, our next attempt will point
mustdiverge at the critical point since we have shown that itto this direction since thphysicalmeaning ofs* seems to
scales like the correlation length. In practice the smallnesspen some perspectives for a possibtm-Gaussian(quar-
parameter is never small th<3, close enough to the critical tic) expansion in cumulants.
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